Function Annotation Macros
#
Defined in header <Kokkos_Macros.hpp>
Usage:
KOKKOS_FUNCTION void foo();
KOKKOS_INLINE_FUNCTION void foo();
KOKKOS_FORCEINLINE_FUNCTION void foo();
KOKKOS_RELOCATABLE_FUNCTION void foo();
auto l = KOKKOS_LAMBDA(int i) { ... };
auto l = KOKKOS_CLASS_LAMBDA(int i) { ... };
These macros deal with the management of split compilation for device and host code.
They fullfill the same purpose as the __host__ __device__
markup in CUDA and HIP.
Generally only functions marked with one of these macros can be used inside of parallel
Kokkos code - i.e. all code executed in parallel algorithms must be marked up by one
of these macros.
KOKKOS_FUNCTION
#
This macro is the equivalent of __host__ __device__
markup in CUDA and HIP.
Use it primarily on inline-defined member functions of classes and templated
free functions
class Foo {
public:
// inline defined constructor
KOKKOS_FUNCTION Foo() { ... };
// inline defined member function
template<class T>
KOKKOS_FUNCTION void bar() const { ... }
};
template<class T>
KOKKOS_FUNCTION void foo(T v) { ... }
KOKKOS_INLINE_FUNCTION
#
This macro is the equivalent of __host__ __device__ inline
markup in CUDA and HIP.
Use it primarily for non-templated free functions:
KOKKOS_INLINE_FUNCTION void foo() {}
Note that it is NOT a bug to use this macro for inline-defined member function of classes, or templated free functions. It is simply redundant since they are by default inline.
KOKKOS_FORCEINLINE_FUNCTION
#
This macro is the equivalent of __host__ __device__
markup in CUDA and HIP, but also uses
compiler dependent hints (if available) to enforce inlining.
This can help with some functions which are often used, but it may also hurt compilation time,
as well as runtime performance due to code-bloat. In some instances using KOKKOS_FORCEINLINE_FUNCTION
excessively can even cause compilation errors due to compiler specific limits of maximum inline limits.
Use this macro only in conjunction with performing extensive performance checks.
class Foo {
public:
KOKKOS_FORCEINLINE_FUNCTION
Foo() { ... };
template<class T>
KOKKOS_FORCEINLINE_FUNCTION
void bar() const { ... }
};
template<class T>
KOKKOS_FORCEINLINE_FUNCTION
void foo(T v) { ... }
KOKKOS_RELOCATABLE_FUNCTION
#
This macro is the equivalent of __host__ __device__
markup in CUDA and HIP, and SYCL_EXTERNAL
in SYCL.
Use it for free functions that are compiled in one compilation unit but called from Kokkos
parallel constructs defined in a different compilation unit.
// functor.cpp
#include <Kokkos_Macros.hpp>
KOKKOS_RELOCATABLE_FUNCTION void count_even(const long i, long& lcount) {
lcount += (i % 2) == 0;
}
// main.cpp
#include <Kokkos_Core.hpp>
KOKKOS_RELOCATABLE_FUNCTION void count_even(const long i, long& lcount);
int main(int argc, char* argv[]) {
Kokkos::ScopeGuard scope_guard(argc, argv);
long count = 0;
Kokkos::parallel_reduce(
n, KOKKOS_LAMBDA(const long i, long& lcount) { count_even(i, lcount); },
count);
}
Note that this macro can only be used if Kokkos was configured with only host execution spaces or if relocatable device code support was explicitly enabled for the CUDA, HIP, or SYCL backend.
KOKKOS_LAMBDA
#
This macro provides default capture clause and host device markup for lambdas. It is the equivalent of
[=] __host__ __device__
in CUDA and HIP.
It is used than creating C++ lambdas to be passed to Kokkos parallel dispatch mechanisms such as
parallel_for
, parallel_reduce
and parallel_scan
.
void foo(...) {
...
parallel_for("Name", N, KOKKOS_LAMBDA(int i) {
...
});
...
parallel_reduce("Name", N, KOKKOS_LAMBDA(int i, double& v) {
...
}, result);
...
}
Warning
Do not use KOKKOS_LAMBDA
inside functions marked as KOKKOS_FUNCTION
etc. or within a lambda marked with KOKKOS_LAMBDA
. Specifically do not use KOKKOS_LAMBDA
to define lambdas for nested parallel calls. CUDA does not support that. Use plain C++ syntax instead: [=] (int i) {...}
.
Warning
When creating lambdas inside of class member functions you may need to use KOKKOS_CLASS_LAMBDA
instead.
KOKKOS_CLASS_LAMBDA
#
This macro provides default capture clause and host device markup for lambdas created inside of class member functions. It is the equivalent of
[=, *this] __host__ __device__
in CUDA and HIP, capturing the parent class by value instead of by reference.
class Foo {
public:
Foo() { ... };
int data;
KOKKOS_FUNCTION print_data() const {
printf("Data: %i\n",data);
}
void bar() const {
parallel_for("Name", N, KOKKOS_CLASS_LAMBDA(int i) {
...
print_data();
printf("%i %i\n",i,data);
});
}
};
Note: If one wants to avoid capturing a copy of the entire class in the lambda, one has to create local copies of any accessed data members, and can not use non-static member functions inside the lambda:
class Foo {
public:
Foo() { ... };
int data;
KOKKOS_FUNCTION print_data() const {
printf("Data: %i\n",data);
}
void bar() const {
int data_copy = data;
parallel_for("Name", N, KOKKOS_LAMBDA(int i) {
...
// can't call member functions
// print_data();
// use the copy of data
printf("%i %i\n",i,data_copy);
});
}
};
KOKKOS_DEDUCTION_GUIDE
#
This macro is used to annotate user-defined deduction guides.
template<class T, size_t N>
class Foo {
T data[N];
public:
template<class ... Args>
KOKKOS_FUNCTION
Foo(Args ... args):data{static_cast<T>(args)...} {}
KOKKOS_FUNCTION void print(int i) const {
printf("%i\n",static_cast<int>(data[i]));
}
};
template<class T, class ... Args>
KOKKOS_DEDUCTION_GUIDE
Foo(T, Args...) -> Foo<T, 1+sizeof...(Args)>;
void bar() {
Kokkos::parallel_for(1, KOKKOS_LAMBDA(int) {
Foo f(1, 2., 3.2f);
f.print(0);
f.print(1);
f.print(2);
});
}