KokkosSparse::spmv¶
Defined in header KokkosSparse_spmv.hpp
template <class ExecutionSpace, class Handle, class AlphaType, class AMatrix,
class XVector, class BetaType, class YVector>
void spmv(const ExecutionSpace& space, Handle* handle, const char mode[],
const AlphaType& alpha, const AMatrix& A, const XVector& x,
const BetaType& beta, const YVector& y);
template <class ExecutionSpace, class AlphaType, class AMatrix, class XVector,
class BetaType, class YVector,
typename = std::enable_if_t<Kokkos::is_execution_space_v<ExecutionSpace>>>
void spmv(const ExecutionSpace& space, const char mode[], const AlphaType& alpha,
const AMatrix& A, const XVector& x,
const BetaType& beta, const YVector& y);
template <class Handle, class AlphaType, class AMatrix, class XVector,
class BetaType, class YVector,
typename = std::enable_if_t<!Kokkos::is_execution_space<Handle>::value>>
void spmv(Handle* handle, const char mode[], const AlphaType& alpha,
const AMatrix& A, const XVector& x,
const BetaType& beta, const YVector& y);
template <class AlphaType, class AMatrix, class XVector, class BetaType, class YVector>
void spmv(const char mode[], const AlphaType& alpha, const AMatrix& A,
const XVector& x, const BetaType& beta, const YVector& y);
Kokkos sparse matrix-vector multiply. Computes y := alpha*Op(A)*x + beta*y, where Op(A) is controlled by mode (see below).
Scale the
y
vector bybeta
, and accumulate the result of the sparse matrix-vector product (A*x
), scaled byalpha
, intoy
.Calls 1. using an spmv handle with
SPMV_FAST_SETUP
algorithm for the handle parameter.Calls 1. using an instance of
Handle::ExecutionSpaceType
for the execution space parameter.Calls 1. using an spmv handle with
SPMV_FAST_SETUP
algorithm and an instance ofHandle::ExecutionSpaceType
for the handle and execution space parameters respectively.
Parameters¶
- space:
execution space instance.
- handle:
an spmv handle that stores multiple parameters for algorithm and third party libraries choices at run time.
- mode:
mode to be applied to
A
, possible values are “N” (normal), “T” (transpose), “C” (conjugate) and “H” (hermitian or conjugate-transpose).- alpha, beta:
scaling coefficents for the matrix
A
and left hand sidey
vector respectively.- A:
The matrix used to perform the matrix-vector product.
- x, y:
The right and left hand side vectors used as input and output respectively.
Type Requirements¶
AMatrix
must be either a KokkosSparse::CrsMatrix or a KokkosSparse::BsrMatrix and have a memory space compatible with theExecutionSpace
type:Kokkos::SpaceAccessibility<ExecutionSpace, typename AMatrix::memory_space>::accessible == true
ExecutionSpace must be a Kokkos execution space
XVector
andYVector
are two Kokkos Views of same rank, either rank 1 or rank 2 with memory spaces accessible fromExecutionSpace
andYVector
must store non-const data:Kokkos::is_view_v<XVector> == true && Kokkos::is_view_v<YVector> == true
XVector::rank() == YVector::rank() && (XVector::rank() == 1 || XVector::rank() == 2)
Kokkos::SpaceAccessibility<ExecutionSpace, typename XVector::memory_space>::accessible
Kokkos::SpaceAccessibility<ExecutionSpace, typename YVector::memory_space>::accessible
!std::is_const_v<typename YVector::value_type> == true
Example¶
#include "Kokkos_Core.hpp"
#include "KokkosKernels_default_types.hpp"
#include "KokkosSparse_CrsMatrix.hpp"
#include "KokkosSparse_spmv.hpp"
using Scalar = default_scalar;
using Ordinal = default_lno_t;
using Offset = default_size_type;
using Layout = default_layout;
int main(int argc, char* argv[]) {
Kokkos::initialize();
using device_type = typename Kokkos::Device<Kokkos::DefaultExecutionSpace,
typename Kokkos::DefaultExecutionSpace::memory_space>;
using matrix_type = typename KokkosSparse::CrsMatrix<Scalar, Ordinal, device_type, void, Offset>;
using graph_type = typename matrix_type::staticcrsgraph_type;
using row_map_type = typename graph_type::row_map_type;
using entries_type = typename graph_type::entries_type;
using values_type = typename matrix_type::values_type;
{
const Scalar SC_ONE = Kokkos::ArithTraits<Scalar>::one();
Ordinal numRows = 10;
// Build the row pointers and store numNNZ
typename row_map_type::non_const_type row_map("row pointers", numRows + 1);
typename row_map_type::HostMirror row_map_h = Kokkos::create_mirror_view(row_map);
for(Ordinal rowIdx = 1; rowIdx < numRows + 1; ++rowIdx) {
if( (rowIdx == 1) || (rowIdx == numRows) ){
row_map_h(rowIdx) = row_map_h(rowIdx - 1) + 2;
} else {
row_map_h(rowIdx) = row_map_h(rowIdx - 1) + 3;
}
}
const Offset numNNZ = row_map_h(numRows);
Kokkos::deep_copy(row_map, row_map_h);
typename entries_type::non_const_type entries("column indices", numNNZ);
typename entries_type::HostMirror entries_h = Kokkos::create_mirror_view(entries);
typename values_type::non_const_type values("values", numNNZ);
typename values_type::HostMirror values_h = Kokkos::create_mirror_view(values);
for(Ordinal rowIdx = 0; rowIdx < numRows; ++rowIdx) {
if(rowIdx == 0) {
entries_h(0) = rowIdx;
entries_h(1) = rowIdx + 1;
values_h(0) = SC_ONE;
values_h(1) = -SC_ONE;
} else if(rowIdx == numRows - 1) {
entries_h(row_map_h(rowIdx)) = rowIdx - 1;
entries_h(row_map_h(rowIdx) + 1) = rowIdx;
values_h(row_map_h(rowIdx)) = -SC_ONE;
values_h(row_map_h(rowIdx) + 1) = SC_ONE;
} else {
entries_h(row_map_h(rowIdx)) = rowIdx - 1;
entries_h(row_map_h(rowIdx) + 1) = rowIdx;
entries_h(row_map_h(rowIdx) + 2) = rowIdx + 1;
values_h(row_map_h(rowIdx)) = -SC_ONE;
values_h(row_map_h(rowIdx) + 1) = SC_ONE + SC_ONE;
values_h(row_map_h(rowIdx) + 2) = -SC_ONE;
}
}
Kokkos::deep_copy(entries, entries_h);
Kokkos::deep_copy(values, values_h);
graph_type myGraph(entries, row_map);
matrix_type myMatrix("test matrix", numRows, values, myGraph);
const Scalar alpha = SC_ONE;
const Scalar beta = SC_ONE;
typename values_type::non_const_type x("lhs", numRows);
typename values_type::non_const_type y("rhs", numRows);
KokkosSparse::spmv("N", alpha, myMatrix, x, beta, y);
}
Kokkos::finalize();
return 0;
}