KokkosSparse::spiluk_numeric¶
Defined in header KokkosSparse_spiluk.hpp
template <typename KernelHandle, typename ARowMapType, typename AEntriesType, typename AValuesType,
typename LRowMapType, typename LEntriesType, typename LValuesType, typename URowMapType,
typename UEntriesType, typename UValuesType>
void spiluk_numeric(KernelHandle* handle, typename KernelHandle::const_nnz_lno_t fill_lev, ARowMapType& A_rowmap,
AEntriesType& A_entries, AValuesType& A_values, LRowMapType& L_rowmap, LEntriesType& L_entries,
LValuesType& L_values, URowMapType& U_rowmap, UEntriesType& U_entries, UValuesType& U_values)
Performs the numeric phase of an incomplete LU factorization with level of fill k.
Parameters¶
- handle:
an instance of
KokkosKernels::KokkosKernelsHandle
from which an spiluk_handle will be used to extract control parameters.- fill_lev:
the level of fill to be used in the ILU factorization.
- A_rowmap, A_entries, A_values:
rowmap, entries and values describing the input CrsMatrix.
- L_rowmap, L_entries, L_values:
rowmap, entries and values of the lower triangular
L
matrix.- U_rowmap, U_entries, U_values:
rowmap, entries and values of the upper triangular
U
matrix.
Type Requirements¶
Two main requirements are that the types of the rowmap
, entries
and values
should be compatible with the type used to build a CrsMatrix and they should be compatible with the types of the KernelsHandle
.
A_rowmap
,A_entries
,A_values
,L_rowmap
,L_entries
,L_values
,U_rowmap
,U_entries
andU_values
should all be Kokkos View of rank 1 and share the samedevice_type
.Kokkos::is_view_v<ARowMapType> && ARowMapType::rank() == 1
Kokkos::is_view_v<AEntriesType> && AEntriesType::rank() == 1
Kokkos::is_view_v<AValuesType> && AValuesType::rank() ==1
Kokkos::is_view_v<LRowMapType> && LRowMapType::rank() == 1
Kokkos::is_view_v<LEntriesType> && LEntriesType::rank() == 1
Kokkos::is_view_v<LValuesType> && LValuesType::rank() == 1
Kokkos::is_view_v<URowMapType> && URowMapType::rank() == 1
Kokkos::is_view_v<UEntriesType> && UEntriesType::rank() == 1
Kokkos::is_view_v<UValuesType> && UValuesType::rank() == 1
std::is_same_v<typename LRowMapType::device_type, typename ARowMapType::device_type>
std::is_same_v<typename LRowMapType::device_type, typename URowMapType::device_type>
std::is_same_v<typename LEntriesType::device_type, typename AEntriesType::device_type>
std::is_same_v<typename LEntriesType::device_type, typename UEntriesType::device_type>
std::is_same_v<typename LValuesType::device_type, typename AValuesType::device_type>
std::is_same_v<typename LValuesType::device_type, typename UValuesType::device_type>
std::is_same_v<typename LRowMapType::device_type, typename LEntriesType::device_type>
std::is_same_v<typename LRowMapType::device_type, typename LValuesType::device_type>
A_rowmap
,A_entries
,L_rowmap
,L_entries
,U_rowmap
andU_entries
should have value types and execution spaces compatible with theKernelsHandle
std::is_same_v<typename ARowMapType::non_const_value_type, typename KernelHandle::size_type>
std::is_same_v<typename AEntriesType::non_const_value_type, typename KernelHandle::ordinal_type>
std::is_same_v<typename AValuesType::value_type, typename KernelHandle::scalar_type>
std::is_same_v<typename LRowMapType::non_const_value_type, typename KernelHandle::size_type>
std::is_same_v<typename LEntriesType::non_const_value_type, typename KernelHandle::ordinal_type>
std::is_same_v<typename LValuesType::value_type, typename KernelHandle::scalar_type>
std::is_same_v<typename URowMapType::non_const_value_type, typename KernelHandle::size_type>
std::is_same_v<typename UEntriesType::non_const_value_type, typename KernelHandle::ordinal_type>
std::is_same_v<typename UValuesType::value_type, typename KernelHandle::scalar_type>
std::is_same_v<std::is_same<typename LRowMapType::device_type::execution_space, typename KernelHandle::SPILUKHandleType::execution_space>
std::is_same_v<std::is_same<typename LEntriesType::device_type::execution_space, typename KernelHandle::SPILUKHandleType::execution_space>
std::is_same_v<std::is_same<typename LValuesType::device_type::execution_space, typename KernelHandle::SPILUKHandleType::execution_space>
L_entries
,L_values
,U_entries
andU_values
are storing output data that needs to be modifiable (non-const)std::is_same_v<typename LEntriesType::value_type, typename LEntriesType::non_const_value_type>
std::is_same_v<typename LValuesType::value_type, typename LValuesType::non_const_value_type>
std::is_same_v<typename UEntriesType::value_type, typename UEntriesType::non_const_value_type>
std::is_same_v<typename UValuesType::value_type, typename UValuesType::non_const_value_type>
Example¶
#include <Kokkos_Core.hpp>
#include <KokkosSparse_CrsMatrix.hpp>
#include <KokkosSparse_spiluk.hpp>
#include <KokkosKernels_IOUtils.hpp>
int main(int argc, char* argv[]) {
Kokkos::initialize();
{
using scalar_t = double;
using lno_t = int;
using size_type = int;
using crsMat_t = typename KokkosSparse::CrsMatrix<scalar_t, lno_t, Kokkos::DefaultExecutionSpace, void, size_type>;
using graph_t = typename crsmat_t::StaticCrsGraphType;
using lno_view_t = typename graph_t::row_map_type::non_const_type;
using lno_nnz_view_t = typename graph_t::entries_type::non_const_type;
using scalar_view_t = typename crsmat_t::values_type::non_const_type;
using ViewVectorType = Kokkos::View<scalar_t*>;
using execution_space = typename ViewVectorType::device_type::execution_space;
using memory_space = typename ViewVectorType::device_type::memory_space;
using KernelHandle = KokkosKernels::Experimental::KokkosKernelsHandle <size_type, lno_t, scalar_t, execution_space, memory_space, memory_space>;
// Read and fill matrix
crsmat_t A = KokkosKernels::Impl::read_kokkos_crst_matrix<crsmat_t>("mtx filename");
graph_t graph = A.graph;
const size_type N = graph.numRows();
typename KernelHandle::const_nnz_lno_t fill_lev = lno_t(2) ;
const size_type nnzA = A.graph.entries.extent(0);
// Create KokkosKernelHandle with an spiluk algorithm, limited by configuration at compile-time and set via the handle
// Some options: {SEQLVLSCHD_RP, SEQLVLSCHD_TP1}
KernelHandle kh;
//kh.create_spiluk_handle(KokkosSparse::Experimental::SPILUKAlgorithm::SEQLVLSCHD_RP, N, EXPAND_FACT*nnzA*(fill_lev+1), EXPAND_FACT*nnzA*(fill_lev+1));
kh.create_spiluk_handle(KokkosSparse::Experimental::SPILUKAlgorithm::SEQLVLSCHD_TP1, N, EXPAND_FACT*nnzA*(fill_lev+1), EXPAND_FACT*nnzA*(fill_lev+1));
auto spiluk_handle = kh.get_spiluk_handle();
lno_view_t L_row_map("L_row_map", N + 1);
lno_nnz_view_t L_entries("L_entries", spiluk_handle->get_nnzL());
scalar_view_t L_values ("L_values", spiluk_handle->get_nnzL());
lno_view_t U_row_map("U_row_map", N + 1);
lno_nnz_view_t U_entries("U_entries", spiluk_handle->get_nnzU());
scalar_view_t U_values ("U_values", spiluk_handle->get_nnzU());
KokkosSparse::Experimental::spiluk_symbolic(&kh, fill_lev, A.graph.row_map, A.graph.entries,
L_row_map, L_entries, U_row_map, U_entries);
Kokkos::resize(L_entries, spiluk_handle->get_nnzL());
Kokkos::resize(L_values, spiluk_handle->get_nnzL());
Kokkos::resize(U_entries, spiluk_handle->get_nnzU());
Kokkos::resize(U_values, spiluk_handle->get_nnzU());
spiluk_handle->set_team_size(16);
KokkosSparse::Experimental::spiluk_numeric(&kh, fill_lev,
A.graph.row_map, A.graph.entries, A.values,
L_row_map, L_entries, L_values, U_row_map, U_entries, U_values );
kh.destroy_spiluk_handle();
}
Kokkos::finalize();
}